Dùng tính chất đường trung tuyến đường cao

Dùng tính chất đường trung tuyến đường cao

Hiện nay có rất nhiều các bạn học sinh không nắm được khái niệm đường trung tuyến là gì? Đường trung tuyến trong tam giác, các tính chất đường trung tuyến hay công thức đường trung tuyến như thế nào? Sau đây chúng tôi sẽ chia sẻ kiến thức tổng quát về đường trung tuyến và những dạng toán thường gặp của đường trung tuyến để các bạn cùng tham khảo nhé

Đường trung tuyến là gì?

Đường trung tuyến của một đoạn thẳng là đường thẳng đi qua trung điểm của đoạn thẳng đó.

Đường trung tuyến trong tam giáclà một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện. Mỗi tam giác đều có ba trung tuyến.

Đối với tam giác cân và tam giác đều, mỗi trung tuyến của tam giác chia đôi các góc ở đỉnh với hai cạnh kề có chiều dài bằng nhau.

Tính chất đường trung tuyến trong tam giác

Ví dụ: Tam giác ΔABC có D, E, F là BC, CA, AB. Khi đó AD, BE, CF lần lượt là các đường trung tuyến xuất phát từ ba đỉnh A, B, C. AD, BE, CF đồng quy ở G.

duong-trung-tuyen

Ta có G là trọng tâm của tam giác ΔABC.

Theo định nghĩa, AE=EC, CD=DB, BF= FA, do đó:

SΔAGE = SΔCGE; SΔBGD = SΔCGD; SΔAGF = SΔBGF trong đó kí hiệu SΔABC là diện tích của tam giác ABC.

Điều này đúng bởi trong mỗi trường hợp hai tam giác có chiều dài đáy bằng nhau, và có cùng đường cao từ đáy, mà diện tích của một tam giác thì bằng 1/2 chiều dài đáy nhân với đường cao, khi ấy hai tam giác ấy có diện tích bằng nhau.

Chúng ta có:

SΔACG = SΔACD SΔCGD; SΔABG = SΔABD SΔBGD

Do đó ta có :SΔABG = SΔACG và SΔDBG = SΔDCG; SΔCDG = 12 SΔACG

Do SΔBGF = SΔAGF, SΔAGF = 12SΔACG = SΔBGF = 12SΔBCG

Do vậy, SΔAFG = SΔBFG = SΔBGD= SΔCGD

Sử dụng cùng phương pháp này. ta có thể chứng minh điều sau:

SΔAFG = SΔBFG = SΔBGD = SΔCGD = SΔCGE = SΔAGE

Tham khảo thêm:

Tính chất đường trung tuyến trong tam giác vuông

duong-trung-tuyen-1

Tính chất đường trung tuyến trong tam giác cân

duong-trung-tuyen-2

Tính chất đường trung tuyến trong tam giác đều

Trong tam giác đều đường thẳng đi qua một đỉnh bất kỳ và đi qua trọng tâm của tam giác sẽ chia tam giác đó thành 2 tam giác có diện tích bằng nhau.

3 đường trung tuyến của tam giác đều sẽ chia tam giác đó thành 6 tam giác có diện tích bằng nhau.

duong-trung-tuyen-3

Công thức tính đường trung tuyến

Công thức tính độ dài đường trung tuyến của cạnh bất kỳ bằng căn bậc 2 của một phần hai tổng bình phương hai cạnh kề trừ một phần tư bình phương cạnh đối.

ma = (2b2 + 2c2 a2)/4

mb = (2a2 + 2c2 b2)/4

mc = (2a2 + 2b2 c2)/4

Trong đó:

Các dạng toán liên quan về đường trung tuyến

Ví dụ 1: Cho tam giác ABC có BC = a = 10 cm, CA = b = 8 cm, AB = c = 7 cm. Tính độ dài các đường trung tuyến của tam giác ABC.

Lời giải:

Gọi độ dài trung tuyến từ các đỉnh A, B, C của tam giác ABC lần lượt là ma; mb; mc.

Áp dụng công thức trung tuyến ta có:

bai-tap-duong-trung-tuyen

Vì độ dài các đường trung tuyến (là độ dài đoạn thẳng) nên nó luôn dương, do đó:

bai-tap-duong-trung-tuyen-1

Ví dụ 2: Cho tam giác ABC cân ở A có AB = AC = 17cm, BC= 16cm. Kẻ trung tuyến AM.

a) Chứng minh: AM BC;
b) Tính độ dài AM.

Lời giải:

a. Ta có AM là đường trung tuyến ABC nên MB = MC

Mặt khác ABC cân tại A

=> AM vừa là đường trung tuyến vừa là đường cao

Vậy AM BC

b. Ta có

BC = 16cm nên BM = MC = 8cm

AB = AC = 17cm

Xét tam giác AMC vuông tại M

Áp dụng Định lý Pitago có:

AC2 = AM2 + MC2 => 172= AM2 + 82 => AM2 = 172- 82= 225 =>AM= 15Cm.

Ví dụ 3: Cho hai đường thẳng xx và yy gặp nhau ở O. Trên tia Ox lấy hai điểm A và B sao cho A nằm giữa O và B, AB=2OA. Trên yy lấy hai điểm L và M sao cho O là trung điểm của đoạn thẳng LM. Nối B với L, B với M và gọi P là trung điểm của đoạn thẳng MB, Q là trung điểm của đoạn thẳng LB. Chứng minh các đoạn thẳng LP và MQ đi qua A.

Lời giải

Ta có O là trung điểm của đoạn LM (gt)

Suy ra BO là đường trung tuyến của ΔBLM (1)

Mặt khác BO = BA + AO vì A nằm giữa O, B hay BO = 2 AO + AO= 3AO vì AB = 2AO (gt)

Suy ra AO= 1/ 3 BO, hay BA= 2/ 3 BO (2)

Từ (1) và (2) suy ra A là trọng tâm của ΔBLM ( tính chất của trọng tâm)

Mà LP và MQ là các đường trung tuyến của ΔBLM vì P là trung điểm của đoạn thẳng MB (gt)

Suy ra các đoạn thẳng LP và MQ đều đi qua A ( tính chất của ba đường trung tuyến)

Ví dụ 4: Gọi S = ma2 + mb2 + mc2 là tổng bình phương độ dài ba đường trung tuyến của tam giác ABC. Khẳng định nào sau đây là đúng? (cho BC = a, CA = b, AB = c)

Lời giải:

Áp dụng công thức trung tuyến trong tam giác ABC ta có:

bai-tap-duong-trung-tuyen-2

Hy vọng với những về kiến thức về đường trung tuyến là gì? mà chúng tôi đã trình bày phía trên có thể giúp bạn nắm được tính chất và công thức tính để áp dụng giải các bài toán liên quan nhé

Video liên quan

https://www.youtube.com/watch?v=670gOKdcn28

admin